DBGPrints Repository
Publications of the German Soil Science Society

Detectable contributions of colloids to soil P and C content in arid and hyperarid region of the Atacama (Chile)

Moradi, G. and Mörchen, R. and Missong, A. and Musch, F. and Unger, K. and Knief, C. and Lehndorff, E. and Amelung, W. and Klumpp, E. and Bol, R. (2017) Detectable contributions of colloids to soil P and C content in arid and hyperarid region of the Atacama (Chile). In: Jahrestagung der DBG 2017: Horizonte des Bodens, 02.-07.09.2017, Göttingen.

[img]
Preview
PDF
Download (12kB) | Preview

Abstract

Atacama Desert is mainly known as the driest place on Earth where life has been developed under arid to hyper arid conditions since Oligocene-Miocene. Therefore, soils of Atacama contain fingerprints of past and present life which might be used as an analog to study the evolution of life under equivalent arid conditions, like Mars. In this study, we quantify the colloidal phosphorus and carbon distribution in the first 10 cm of soil profile along an altitudinal transect. Samples were taken along a transect in the region of Quebrada Aroma spanning from the arid Percordillera of the Andes (2720 m a.s.l.) towards the hyper arid core of the desert (1340 m a.s.l.). Water dispersible colloids (WDC) were separated and measured using the field-flow-field fractionation (FFF) method and subsequently their Corg and P content were characterized and quantified by detectors (DLS, ICP-MS, UV, OCD, fluorescence). Data was compared to total C, P and (available) Olsen-P also measured in the samples. The Olsen-P (available-P) varied within the Aroma transect from ca. 2 to 8 mg P kg-1, but was not related to either altitude or depth in the upper soil (0-10 cm). Colloidal P contents ranged from <0.1 to 4 mg P kg-1 soil, with increasing trend from low to higher elevations. Thereby, suggesting an increasing proportion of the available P potential being present in the WDC fraction. The Colloidal Corg content of the Aroma transect did range from 65 to 90 (for sites 2020 to 1340m) and 110 mg Corg kg-1 soil WDC (2720 m). Colloidal Corg content as a function of the altitude showed a similar trend to the Corg content of the soils: the highest colloidal Corg content was found at 2720 m. The proportion of soil Corg within the colloidal fraction was up to 6% of the bulk soil organic matter (OM) content, as the OM content was intensively enriched in the colloidal fraction. Further quantification of phosphorus and carbon content in WDC in deeper part of soil is required to obtain a more comprehensive view of role of colloidal inputs and dynamics in the Atacama Desert.

Item Type: Conference or Workshop Item (Contribution to "Reports of the DBG")
Uncontrolled Keywords: Organische Bodensubstanz: Struktur, Funktionen, Dynamik
Divisions: Kommissionen > Kommission II: Bodenchemie
Depositing User: Unnamed user with email dbg@dbges.de
Date Deposited: 19 Mar 2018 21:24
Last Modified: 19 Mar 2018 21:24
URI: https://eprints.dbges.de/id/eprint/1780

Actions (login required)

View Item View Item