

Jahrestagung der Deutschen Bodenkundlichen Gesellschaft 02. - 07.09.2017, Göttingen

Tagungsnummer

V65

Thema

Kommission IV: Bodenfruchtbarkeit und Pflanzenernährung

Waldernährungsstrategien und deren Wechselwirkung mit bodenchemischen und bodenbiologischen Eigenschaften

Autoren

D. P. Zederer¹, U. Talkner¹

¹Nordwestdeutsche Forstliche Versuchsanstalt, Abteilung Umweltkontrolle, Göttingen

Titel

Abschätzung der Netto-P-Mineralisierung im mineralischen Waldoberboden und deren potentielle Bedeutung für die P-Ernährung der Rotbuche

Abstract

Die Mineralisierung organischer Phosphorverbindungen (P_{org}) sowie von mikrobiellem Biomasse-P (P_{mik}) steht im Zentrum des P-Kreislaufs von Waldökosystemen. Die Quantifizierung von Netto-P-Mineralisierungsraten ist jedoch mit erheblichen methodischen Problemen behaftet, da P-Mineralisierungs-, -Immobilisierungs- sowie -Sorptionsprozesse im Boden simultan ablaufen. Um die Einflussfaktoren auf die Netto-P-Mineralisierungsrate sowie deren potentielle Bedeutung für die P-Ernährung der Rotbuche zu untersuchen, wurde eine 33 P-Isotopenverdünnungsmethode an mineralischen Oberbodenproben (0-10 cm) von 9 Mull- und 11 Moderstandorten angewendet. Dieser Studie lagen drei Hypothesen zugrunde: (i) die Netto-P-Mineralisierungsrate wird durch den P_{org} -Gehalt, das $C:P_{org}$ -Verhältnis sowie die P-Sorptionseigenschaften des Bodens beeinflusst; (ii) die spezifischen Netto-P-Mineralisierungsraten sind wegen unterschiedlicher biologischer Aktivität höher unter Mull als unter Moder und (iii) die Netto-P-Mineralisierungsrate ist positiv mit dem Blatt-P-Gehalt der Rotbuche korreliert

Die durch physikochemische Prozesse bedingte Ionenaustauschrate wurde anhand von Kurzeit-³³P-Sorptionsversuchen modelliert. Zeitgleich wurden zur Bestimmung der Brutto-P- Mineralisierungs- und –Immobilisierungsraten ³³P-markierte Proben über einen Zeitraum von 7 d inkubiert.

Erste Daten von 12 Böden deuten darauf hin, dass die Parametrisierung des Modells zur Beschreibung der Ionenaustauschrate sowie die Verwendung eines Faktors zur Korrektur der unvollständigen Extraktion von P_{mik} (k_{EP}) starke Auswirkungen auf die berechneten Netto-P-Mineralisierungsraten haben. Wurde kein k_{EP} -Faktor angewandt, war die berechnete Netto-P-Mineralisierungsrate positiv mit der Brutto-P-Immobilisierungsrate (R^2 =0.70, p<0.01) korreliert, jedoch nicht mit dem P_{org} -Gehalt. Die Anwendung eines k_{EP} -Faktors von 0.4 führte hingegen zu einer signifikanten Korrelation zwischen der Netto-P-Mineralisierungsrate und dem P_{org} -Gehalt (R^2 =0.37, p<0.05), nicht jedoch mit der Brutto-P-Immobilisierungsrate. Diese Befunde könnten darauf hindeuten, dass ein signifikanter Anteil von immobilisiertem P fälschlicherweise der Netto-P-Mineralisierung zugeschrieben wird, wenn kein k_{EP} -Faktor angewendet wird. Des Weiteren deuten die ersten Ergebnisse darauf hin, dass die Sorptionseigenschaften des Bodens die P-Mineralisierungs- und -Immobilisierungsraten erheblich beeinflussen.