DBGPrints-Archiv
Publikationen der Deutschen Bodenkundlichen Gesellschaft

Release of phosphorus from soil bacterial and fungal biomass following drying/rewetting

Dinh, V. und Guhr, A. und Spohn, M. und Matzner, E. (2017) Release of phosphorus from soil bacterial and fungal biomass following drying/rewetting. In: Jahrestagung der DBG 2017: Horizonte des Bodens, 02.-07.09.2017, Göttingen.

[img]
Vorschau
PDF
Herunterladen (11kB) | Vorschau

Kurzfassung

Previous work has shown that the drying/rewetting (D/W) of soils mobilizes phosphorus (P), and that the effect of D/W on P release likely depends on the soil microbial community composition. We tested the hypotheses that (i) P release after D/W from fungi is lower than from bacteria and that (ii) gram-positive bacteria are less susceptible to D/W than gram-negative bacteria. We investigated the release of dissolved organic (DOP) and inorganic phosphorus (DIP) from bacterial and fungal biomass after rewetting of an artificial soil that was desiccated to different degrees. For this purpose, sterilized soil amended with growth medium was inoculated separately with one of two bacterial strains (Pseudomonas fluorescens, gram-negative and Micrococcus luteus, gram-positive) or with one fungal strain (Penicillium chrysogenum). The bacterial strains were grown for 7 days, the fungus for 25 days at 50% soil water holding capacity. After the pre-incubation period, microbial biomass P (Pmic) was determined by chloroform fumigation extraction, and soils were desiccated at 20ºC for 5 – 8 days until pF 6 (-100 MPa) was reached, while the controls were kept permanently at 50% water holding capacity. At different degrees of desiccation, samples were destructively harvested and soils were extracted with water to measure the release of DIP and DOP. The net release of total dissolved P per unit Pmic following D/W was in the order P. fluorescens >> M. luteus = P. chrysogenum. In case of P. fluorescens, net release started already after desiccation to pF 4 (-1.0 MPa) and increased with further desiccation. For M. luteus and P. chrysogenum, a tendency for net release was only observed after severe desiccation up to pF 6. Our results suggest that the effect of D/W on P release from microbial biomass depends largely on the microbial community composition, with fungi and gram-positive bacteria being less susceptible to D/W than gram-negative bacteria.

Eintragstyp: Konferenz- oder Workshop-Beitrag ("Berichte der DBG")
Stichwörter: Funktionelle Bedeutung von Mikroorganismengemeinschaften für die Stoffdynamik in Böden
Bereiche: Kommissionen > Kommission IV: Bodenfruchtbarkeit und Pflanzenernährung
Benutzer: Unnamed user with email dbg@dbges.de
Hinterlegungsdatum: 19 Mär 2018 21:23
Letzte Änderung: 19 Mär 2018 21:23
URI: https://eprints.dbges.de/id/eprint/1328

Aktionen (Anmeldung erforderlich)

Eintrag anzeigen Eintrag anzeigen