Tagungsbeitrag zu: Jahrestagung der DBG, Kommission IV
Titel der Tagung: Böden verstehen, Böden nutzen, Böden fit machen
Veranstalter: DBG, 03.-09.09.2011,
Berlin und Potsdam
Berichte der DBG (nicht begutachtete
Online-Publikation)
http://www.dbges.de

# Anteil von Pilzen und Bakterien an der Lachgasbildung in verschiedenen Böden

Lena Rohe<sup>1</sup>, Reinhard Well<sup>1</sup>, Nicole Wrage<sup>2</sup>, Traute-Heidi Anderson<sup>1</sup>, Heinz Flessa<sup>1</sup>

## **Schlüsselworte**

Denitrifikation, N<sub>2</sub>O-Bildung, Isotopensignatur

## **Einleitung**

Das klimarelevante Spurengas N<sub>2</sub>O wird in landwirtschaftlich genutzten Böden vor allem durch mikrobiologische Prozesse gebildet. insbesondere durch die Nitrifikation und Denitrifikation (Smith et al. 2008, Baggs et al. 2008). Diese N<sub>2</sub>O-Bildung wurde jahrzehntelang den Bakterien zugeschrieben. Nicht ausreichend erforscht ist jedoch, welchen Anteil die Pilze im Gegensatz zu den Bakterien an der N<sub>2</sub>O-Bildung haben. Die Bildung von N<sub>2</sub>O durch pilzliche Denitrifikation

<sup>1</sup>Institut für Agrarrelevante Klimaforschung Johann Heinrich von Thünen-Institut Bundesallee 50, 38116 Braunschweig lena.rohe@vti.bund.de <sup>2</sup>Fakultät Life Sciences Hochschule Rhein-Waal Landwehr 4, 47533 Kleve wird möglicherweise weit unterschätzt: Durch Reinkulturversuche mit Pilzenkonnte gezeigt werden, dass bei pilzlicher Denitrifikation meist keine N<sub>2</sub>O-Reduktion stattfindet und somit N<sub>2</sub>O das Endprodukt dieses Reaktionsweges ist (Shoun et al. 1992). Dadurch könnte der relative N2O-Anteil bei gleicher Umsetzung durch die Mikrobei organismen der pilzlichen Denitrifikation höher sein als bei der bakteriellen (Sutka et al. 2008). Eine Unterscheidung zwischen pilzlichen und bakteriellen N<sub>2</sub>O-Bildung im Boden ist demnach eine Grundvoraussetzung, um die Zusammenhänge der N<sub>2</sub>O-Quell- und Senkenprozesse zu verstehen und effektive Minderungsmaßnahmen für N<sub>2</sub>O-Emissionen zu entwickeln.

Die Anwendung selektiver Inhibitoren Untersuchung der N<sub>2</sub>Ound Isotopomersignatur könnten geeignet sein, eine Unterscheidung der pilzlichen und bakteriellen N2O-Bildung zu ermöglichen. Untersuchungen Reinkulturen haben gezeigt, dass N<sub>2</sub>O bakteriellen und pilzlichen Denitrifikanten eine unterschiedliche <sup>15</sup>N-Signatur positions-spezifische (<sup>15</sup>N-Positionspräferenz = Differenz δ<sup>15</sup>N-Werten den zwischen terminalen und zentralen N-Atome im linearen N<sub>2</sub>O-Molekül, in per mil) (Well et al. 2006) aufweist. Die Positionspräferenz von Versuchen mit Reinkulturen lag bei 36 bis 37 ‰ bei Denitrifikation und pilzlicher bakterieller Denitrifikation zwischen -10,7 bis 0 ‰ (z.B. Sutka et al. 2006, Sutka et al. 2008, Frame & Casciotti 2010).

Ziel der Studie ist es, (a) den pilzlichen Beitrag zur N<sub>2</sub>O-Bildung in verschiedenen Böden bei variierter Feuchte zu bestimmen und (b) zu prüfen, inwieweit der Beitrag von Bakterien und Pilzen zu den N<sub>2</sub>O-Emissionen mittels Isotopensignaturen abschätzbar ist.

## **Material und Methoden**

Die Versuche erfolgten unter Berücksichtigung von jeweils zwei Landnutzungen (Abb. 1). Es wurde Boden aus den oberen 30 verwendet. Mittels der Substratinduzierten Respiration mit selektiver Hemmung (Anderson & Domsch, 1975) wurde in Vorversuchen die potentielle respiratorische Aktivität der Pilze und Bakterien in den Böden ermittelt, um einen Anhaltspunkt über den Anteil der Pilze und Bakterien an der mikrobiellen Biomasse 7U Bestimmung bekommen. Die respiratorischen Pilz:Bakterien-Verhältnisses wurde in einem Durchflusssystem mit automatischem Infrarot-Gasanalysator (stündlich) ermittelt (Heinemeyer et al. 1989). Dabei kann nach Substratzugabe (Glukose) CO<sub>2</sub> als Produkt der Respiration gemessen werden. Die folgenden vier Varianten mit jeweils 25 g trockenem Boden (Trockenmasse = TM) (n = 3) und Glukose als Substrat wurden mit der Zugabe von

- a) keinem Wachstumshemmer, Kontrolle,
- b) Streptomycin (Wachstumshemmung der Bakterien),
- c) Cycloheximid (Wachstumshemmung der Pilze) und
- d) Cycloheximid und Streptomycin (Wachstumshemmung der Pilze und Bakterien) angesetzt.

Die Inhibitoren unterbinden die eukaryotische bzw. prokaryotische Proteinbiosynthese der Organismen

und hemmen somit das Wachstum. Mit Substrat-induzierten Respiration selektiven Hemmung konnte außerdem die benötigte Menge an Inhibitoren (100 mg/g<sub>TM</sub> Streptomycin und 75 mg/g<sub>TM</sub> Cycloheximid) ermittelt werden. In weiterführenden batch-Versuchen wurde die Methode der selektiven Hemmung erprobt, um den jeweiligen Beitrag der Bakterien und Pilze an der N<sub>2</sub>O-Bildung bestimmen. Den Böden (je 100 g<sub>TM</sub>) in den vier Varianten (siehe oben) wurden die selektiven Hemmstoffe in den ermittelten Konzentrationen jedoch ohne Glukose zugeführt. Zur Herstellung denitrifizierender Bodenbedingungen wurde der Wassergehalt auf 60, 70 und 80 % des Porenvolumens (water filled pore space = WFPS) eingestellt und mit NaNO<sub>3</sub> gedüngt (50 mg N/kg). Eine manuelle Beprobung der Gasphase fand 0, 1, 2, 4, 6 und 8 Stunden nach gasdichtem Verschließen der Inkubationsgefäße statt.

An den Proben wurde die N<sub>2</sub>O-Konzentration gaschromatographisch Netto-N<sub>2</sub>Ogemessen, um die Produktion zu bestimmen. Weiterhin wurde die <sup>15</sup>N-Positionspräferenz im N<sub>2</sub>O durch Kryo-Fokussierung anschließender Massenspektrometrie (Well & Flessa, 2008) gemessen, um die Hypothese zu prüfen, dass sich die <sup>15</sup>N-Positionspräferenz im  $N_2O$ Abhängigkeit der Produktion durch Pilze oder Bakterien unterscheidet.

## **Ergebnisse und Diskussion**

In allen untersuchten Bodenproben dominierten die Pilze die respiratorische Biomasse, unabhängig von der Landnutzung (Abb. 1).

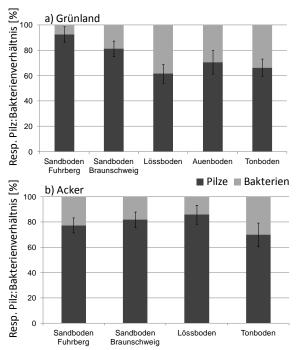



Abb. 1: Respiratorisches Pilz:Bakterienverhältnis [%]  $\pm$  sd a) im Grünland und b) im Acker (n = 3).

Bei Böden konnte nur drei der Effekt der Wachstumserwartete hemmer auf die N<sub>2</sub>O-Bildung bei den verschiedenen Varianten vier beobachtet werden. Bei diesen drei Böden war die N<sub>2</sub>O-Bildung bakterieller Wachstumshemmung, in dem die Pilze dominieren sollten, höher als in der Variante mit pilzlicher Wachstumshemmung, in hingegen die Bakterien dominieren sollten. Die Kontrolle. ohne Wachstumshemmer, erzielte die höchste N<sub>2</sub>O-Bildung im Versuchsverlauf und wie erwartet stieg die N2O-Konzentration im Inkubationsgefäß über die 8 Versuchsstunden an. Bei Anwendung beider Inhibitoren wurde, wie erwartet, die geringste Produktion gemessen (Abb. 2). Dies stellt die Restbildung von N<sub>2</sub>O dar, die durch Organismen entsteht, deren Proteinbiosynthese nicht von Inhibitoren betroffen sind oder aber die im Boden aktiv waren, sich aber nicht in der Wachstumsphase befanden. Archaea sind zum Beispiel nicht von den Inhibitoren betroffen, tragen aber auch zur  $N_2$ O-Bildung im Boden bei (Hayatsu et al. 2008).

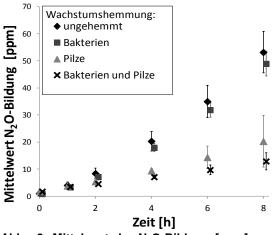



Abb.: 2: Mittelwert der  $N_2$ O-Bildung [ppm]  $\pm$  sd der vier Varianten beispielhaft für einen Sandboden (Fuhrberger Feld Acker) mit 70% WFPS (n = 3).

<sup>15</sup>N-Positionspräferenz nach Die Versuchsstunden der drei Böden lag bei den Proben im Bereich Reinkulturen bakterieller Denitrifikation (-10,7 bis 0 %) (Abb. 3). Es war kein Unterschied der verschiedenen Varianten mit Anwendung der selektiven Inhibitoren in unseren Versuchen erkennbar. Auch die Variante mit Wachstumshemmer der Bakterien. in dem pilzliche N<sub>2</sub>O-Bildung dominieren sollte, liegt bei allen drei Böden im negativen Bereich. Die in Reinkulturen beobachtete stark <sup>15</sup>N-Positionspräferenz positive pilzlicher N2O-Bildung konnte in keiner Variante bestätigt werden. Es bleibt jedoch unklar, in welchem Umfang pilzliche und bakterielle Organismen, deren Wachstum nicht gehemmt war, der beobachteten N<sub>2</sub>O-Bildung beige-tragen haben. Weiterhin liegen keine Informationen über die N<sub>2</sub>O-Reduktion verschiedenen in den Varianten vor. Somit könnte diese

auch einen Einfluss auf die <sup>15</sup>N-Positionspräferenz in den Gasproben haben.

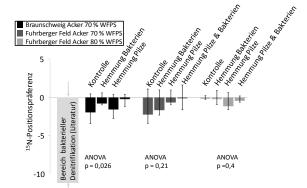



Abb. 3: <sup>15</sup>N-Positionspräferenz [‰] ± sd der drei Böden mit den verschiedenen Varianten (n = 3). Literaturangaben: Frame & Casciotti 2010, Sutka et al. 2006.

## Ausblick

Der Inhibitionsversuch sollte mit dem weiterentwickelt werden. eine bessere Effektivität der Inhibitoren zu erreichen. Dafür müssen die Organismen zum Wachstum angeregt werden. was durch Zugabe des Substrats Glukose erreicht werden Weiterhin lieat könnte. Information über das Ausmaß der N2O-Reduktion in den Varianten vor. Es ist bekannt, dass die N2O-Reduktion zu <sup>15</sup>N-Positions-Anstieg der einem präferenz im verbleibenden N<sub>2</sub>O führt (Well et al. 2006). Außerdem sollte die N<sub>2</sub>O-Reduktion unterbunden werden, um eine Überlagerung der Isotopeneffekte der N<sub>2</sub>O-Bildung und des N<sub>2</sub>O-Verbrauchs zu vermeiden.

#### **Dank**

Dieses Projekt wurde finanziert vom Land Niedersachsen.

## Literatur

- Anderson, J.P.E., Domsch K.H. (1975): Measurement of bacterial and fungal contributions to respiration of selected agricultural soils. Can.J.Microbiol. 21: 314-322.
- Baggs, E.M. (2008): A review of stable isotope techniques for N<sub>2</sub>O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun. Mass Spectrom. 22: 1664–1672.
- Frame C-H., Casciotti, L. (2010): Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7: 2695–2709.
- Hayatsu, M., Tago, K., Saito, M. (2008): Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition 54: 33–45.
- Heinemeyer, O., Insam, H., Kaiser, E.-A., Walenzik, G. (1989): Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant and Soil 116: 191-195.
- Shoun, H., Kim, D.-H., Uchiyama, H., Sugiyama, J. (1992): Denitrification by fungi. FEMS Microbiology Letters 94: 277-282.
- Smith, P., Martiono, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith J. (2008): Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci. 363(1492): 789–813.
- Sutka R.L., Ostrom, N.E., Ostrom, P.H., Breznak, J.A., Gandhi, H., Pitt, A.J., Li, F. (2006): Distinguishing Nitrous Oxide Production from Nitrification and Denitrification on the Basis of Isotopomer Abundances. Applied And Environmental Microbiology: 638–644.
- Sutka, R.L., Adams, G.C., Ostrom, N.E., Ostrom, P.H. (2008): Isotopologue fractionation during  $N_2O$  production by fungal denitrification. Rapid Commun. Mass Spectrom. 22: 3989–3996.
- Well R., Kurganova, I., Lopes de Gerenyu, V., Flessa, H. (2006): Isotopomer signatures of soil-emitted N<sub>2</sub>O under different moisture conditions—A microcosm study with arable loess soil. Soil Biology & Biochemistry 38: 2923-2933.
- Well, R., Flessa, H. (2008): Isotope fractionation factors of N<sub>2</sub>O diffusion. Rapid Commun. Mass Spectrom. 22: 2621–2628.