

Jahrestagung der Deutschen Bodenkundlichen Gesellschaft 02. - 07.09.2017, Göttingen

Tagungsnummer

V339

Thema

Kommission I: Bodenphysik und Bodenhydrologie

Freie Themen

Autoren

K. Dorau¹, J. Luster², T. Mansfeldt¹

¹Universität zu Köln, Geographisches Institut, Köln; ²Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürich

Titel

Soil aeration - The relationship between redox potential and air-filled pores

Abstract

Soil water contents are variable with impact on oxygen diffusion rates and redox potentials (E_H). When water saturated soils become aerated, a switch from reducing to oxidizing conditions occurs. However, only limited information are available at which air-filled pore volume ([epsilon]) this dramatic shift happens. Therefore, undisturbed soil cores were taken by steel cylinders from the topsoils of a Fluvisol and a Gleysol that differed in soil structure and clay content. After submergence in the laboratory, the samples were sealed by a glass dome to exclude oxygen and to achieve strongly reducing conditions ($E_H < -100 \text{ mV}$). We aerated the sample on demand by removal of glass plugs in the dome and consecutively measured E_H by platinum-(Pt) tipped electrodes and [epsilon] by pressure head readings on hourly basis. We propose to use the terms: i) [epsilon] $_{Pt \text{ reaction}}$, to indicate the air-filled pore volume at which a response of the Pt-tipped electrode due to contact with oxygen occurs (i.e., E_H increase > 5 mV h⁻¹), and ii) [epsilon] $_{Pt \text{ aeration}}$, to indicate when oxidizing soil conditions are present (i.e., $E_H > 300 \text{ mV}$ at pH 7). These characteristic [epsilon] $_{Pt \text{ reaction}}$ values were at 0.036±0.013 cm³ cm⁻³ for the Fluvisol and at 0.048±0.017 cm³ cm⁻³ for the Gleysol whereas [epsilon] $_{Pt \text{ aeration}}$ values were at 0.047±0.005 and at 0.085±0.002 cm³ cm⁻³, respectively. This study provided important information to determine the aeration status of a soil when, e.g., [epsilon] is known but E_H measurements are absent.